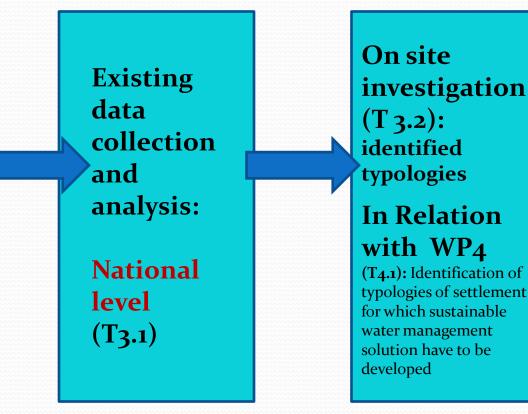
Sustainable Domestic water use in the Mediterranean Regions

SWMED pilot areas in Tunisia: places, target groups and stakeholders involved

Speaker, Latifa Bousselmi CERTE 2nd Project Meeting – Tunisia Steering Committee 27 september 2012



WP3

WP 3 Data gathering and analysis of existing water and wastewater systems, household water consumption and current water uses

1-Rural settlement with in-house water distribution systems but no sewage system (individual sanitation)

2-Rural village with in-house water
distribution systems with partially sewage system and without treatment plant

3-Urban areas with prevalence of multi-floor
buildings: in house water distribution systems
and sewage systems and treatment plant.

1-Rural settlement with in-house water distribution systems but no sewage system (individual sanitation): Chorfech 24 (Part 1)

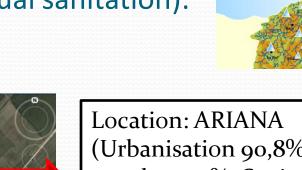
24 Km in the NW of Tunis

La constance de la constance d

350 habitants, 50 houses

WWTP: Flow 17 m3/day Septic tank + CW (H-V-H)

> PROJECT SWMED BI/2.1/548 – ENPI CBC Med PROGRAMME


Location: ARIANA (Urbanisation 90,8%, water supply 99,9%, Sanitation 90,5%) 2011 Name: Chorfech 24 (Part 1) Hab: 180, 2020: 262 House: 39

Chorfech

Target groupe: Habitants Water and Sanitation actors in rural area

Staekholders Involved: ONAS, SONEDE, Local authority

Division of Cherfech 24 in two parties

PROJECT SWMED BI/2.1/548 – ENPI CBC Med PROGRAMME

Survey :

-Water origin, consumption and sanitation - Water Domestic equipments and use frequency - Social situation and information in habitants

- (Nb) - House area
- Rainwater harvesting, water reuse
- -Irrigation and/or livestock
- -Public building
- -Industriel building

Example of collected Datas (Analysis ongoing)

House Characteristics					
Repartition based on typ	e %	Repartition based on area, %			
Individual	59,26				
Semi collective	40,74	<300 m2	0		
100% de propriété		Between 300 and 500 m2	81,82		
Repartition based on room number		Between 500 and 1000 m2	3,03		
		>=1000	15,15		
1 room	0	Equipment, Average			
2 rooms	17,14	Tap water	2,9		
3 rooms	51,43	shower	1,0		
4 rooms	20	WC+flushing	1,0		
5 rooms and more	11,43	Access to Washing machine% 97,4			
Number of House	39	9 There is no use of water saving equipment			

Potable water consumption					
Average m3/year/household	256	Average I/day/bab glabal	164		
global m3/year/household	230	Average I/day/hab global Average I/day/ hab	104		
domestic	176	domestic	129		
total (m3/year)	9746	interval	50-250		

Characteristics Household						
Average Nb hab		4,3				
Average Age		34	4 Data available, number			
Breakdown by pro	ofessio	nal				
category	%		unen	nployed person, retir	ed	7,89
Senior manager		2,63	Daily	or seasonally worke	r	7,89
Worker, tertiary	18,42			anent worker		2,63
craftsman	10,53			Public service		
Worker, industry 2,63 1			Total Population			167
		Ag	ricult	iral Data		
					2 SONEDE and 2	
House Number			4	Water source	Madjerda	
				Consomption,		
				SONEDE,		
				m3/year/household		24
			Consumption,			
fruit trees, fodder		•	Madjerda,			
Type s	shrub			m3/year/household		216
Irrigation type	Drop by	drop		Concerned house	1/3/26/29	

	Anim	al data		
Nb of « Elevage »	9	Water origin	SONEDE	
	bovine (mainly dairy	Total consomption		
Nature	cattle) and sheep	m3/Year	1328	
19 dairy cows, 92 Conc		Concerned houses 14/17-2/18-2/19-2/21/23-		
Nb animal	sheep, 22 bovine	2/12/2/6		
	8 permanents and one			
	in summer and the			
Permanence	approach of Eid			

www.zero-m.org

School of Chorfech

SWM Options

- Rainwater harvesting : Toilet Flushing
- Black water: Septic tank + H CW, gardening (drop by drop)

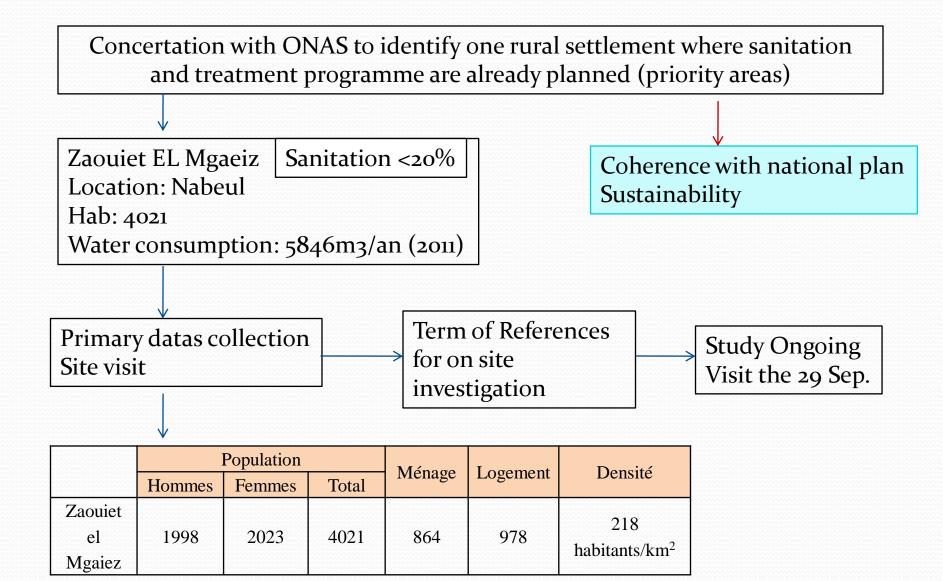
- Potable water (SONEDE): Drinking
- Dry Urinals (collect of Urine)
- Water metering (SONEDE, rain water use)

Monitoring, Example (analysis ongoing)

(n=6)	Sej	ptic tank	E1	Se	ptic tank	E2	Se	ptic tank	E3	Ou	t put CV	VE4
paramètres	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max	Min	Moy	Max
рН	7,41	7,66	8,1	7,72	7,84	8,23	7,78	7,92	8,27	7,55	7,74	8,22
CE	2,72	3,03	3,27	2,51	2,87	3,14	2,4	2,75	3,05	1,5	2,12	2,64
MES (mg/L)	840	1141	2140	390	573	690	200	418	570	10	81	180
DCO	220	1152	3640	80	420	880	160	400	800	80	152	220
(mgO ₂ /L)	320	1153	3040	80	420	880	160	400	800	80	153	320
DBO ₅	300	475	1000	140	196	270	40	95	140	4	17	40
(mgO_2/L)												
$PO_4^{3-}(mg/L)$	21,61	41,48	85,01	15,44	42,82	88,71	11,65	27,35	63,4	0	4,79	9,4
$NH_4^+(mg/L)$	171,42	223,65	287,72	191,87	220,62	253,57	163,12	181,37	198,85	17,72	71,42	125,62
NTK (mg/L)	271,6	282,52	291,2	260,4	279,4	296,8	232,4	270,29	285,6	26,88	81,01	146,16
NO ₃ ⁻ (mg/L)	0,15	0,69	1,43	0,17	0,34	0,56	0,1	0,23	0,38	0	0,28	0,74
NO ₂ -(mg/L)	0,06	0,08	0,12	0,03	0,07	0,12	0,02	0,05	0,08	0,01	0,37	0,8

+ bacteriological analysis

Black water, 2012

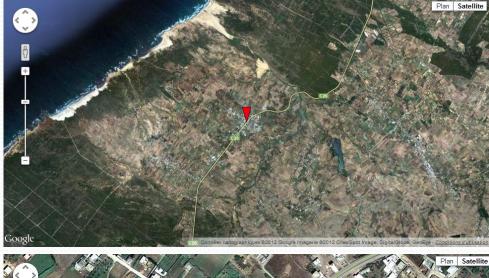

Water consumption

SONEDE	(2005) m ³	(2006) m ³	(2007) m ³	(2008) m ³	(2009) m ³	(2010) m ³	(2011) m ³	(2012) m ³
Débit spécifique (m ³ /j)	1,808	1,405	1,267	DND*	0,901	0,616	0,919	7,3
Consommation (l/j/élève)	17,8	9,8	6,29	DND*	7,9	5,6	8,3	

Compteur (réservoir eau pluviale) 10 Débit (m3) 9. Rainwater 8 · 7 6 5 4 3 2 1 0 trim 2 trim 3 trim 4 trim 1 trim 2 trim 3 trim 4 trim 2 2009 2010 2012

Janv. Fev. Mar.

2-Rural village with in-house water distribution systems with partially sewage system and without treatment plant



Zaouiet EL Mgaeiz

Target groupe: Habitants Water and Sanitation actors in rural area

Staekholders Involved: ONAS, SONEDE, Local authority, NGO

Coherence with H2020 programme

3-Urban areas with prevalence of multi-floor buildings: in house water distribution systems and sewage systems and treatment plant.

Tunis Urban Area: Orientation for multi floor building

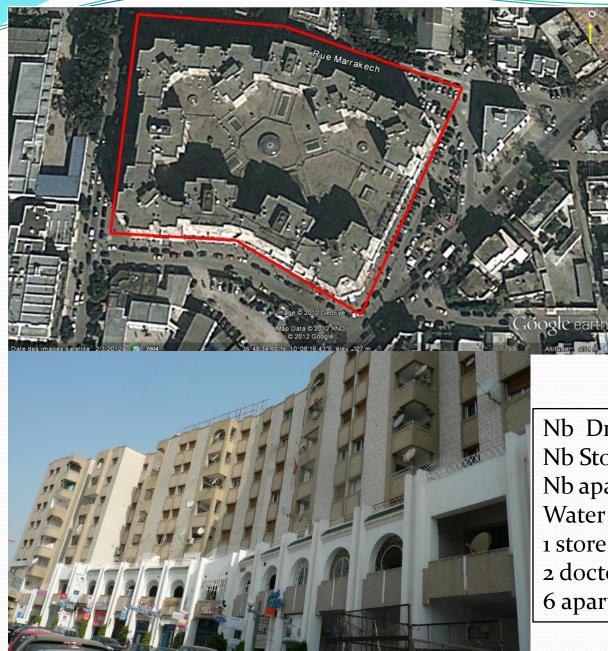
Multiplication of new urban areas (regions Manar, zahra, borj cedria..) : lack of sustainable domestic water management (sustainable/green buildings)

Bardo Centre

LE BARDO

Population	68 976
Rate of Growth	-0,34%
Nb of household	177999
Average household size	3,95
Water supply rate	99,90%
Connexion rate to sanitation system	98,40%
Bath room rate	67,10%
Average density habitants/km ²	10011
Nb Household	19594

Water consumption per activity (mille m3)	
Domestic	2743,4
Industry	5,1
Sanitation system	
Nb Subscribers	18837
WWTP(charguia)	-
Pumping station	0
Network	87965
Rain water (sabket Sejoumi)	
2004 2008	


2004-2008

Target group: Habitants Water and Sanitation actors in urban area, Architect,

Staekholders Involved: ONAS, SONEDE, Local authority, Syndic

BARDO Centre

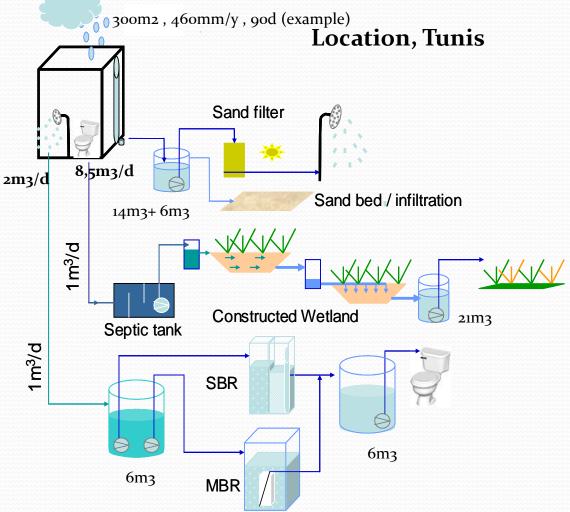
Building: M +5 floors 10 Buildings Small stores Supermarket Offices (doctor, lawer,..) Inside commercial area

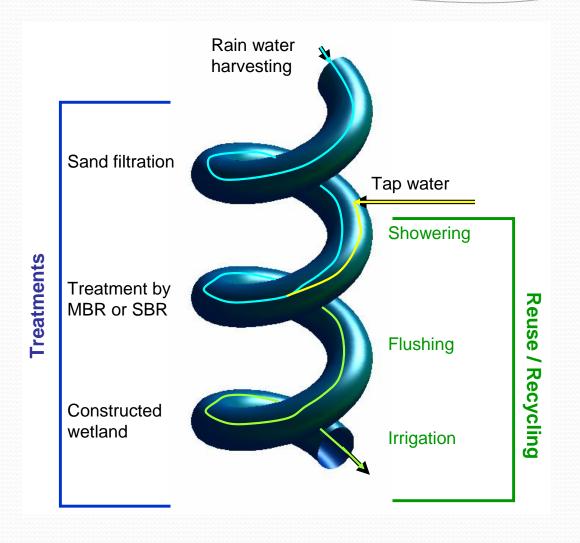
Primary data collection

Survey: N° 5 to N°10

Nb Dr. Offices: 46, Answer: 8 Nb Stores: 26, Answer: 14 Nb apartments: 80, Answer: 9 Water consumption during august: 1 store 146l/day 2 doctor offices (70-300l/day) 6 apartments (300-700l/day)

Examples of Datas: (ongoing analysis


Characteristic of household					
Size of household		Average number			
3 room	37,5	Тар	4,22		
4 room	50	Shower	1		
5 room 12,5		WC (+ flushing)	1,44		
Average size	3,75				
			77,7		
Air conditionner %	,)	Washing machine rate %	8		
Yes	88,89	Air conditionner, average number	2,13		
Discharge %		Nb of clothes washing/week	3,38		
Natural system	40	Nb of cleaning/week	4,67		
Cleaning	40	Average area m ²	145		
network	20	Average household size	3,5		


Commercial consumption (Shops)		Consumption Offices	Consomption Hab		
Average consumption		Average consumption	Average consumption		
m3/an	227	m3/an	68,5	m3/an	189
m3/an/m²	1,3	l/day/user	47	l/day/hab	173
l/day/user	104				

WP6: Dissemination among households, water utilities and construction companies of best practices tailor-made for each local situation and definition of policies to promote them

Task 6.4 Creation in MED countries of a SWM house 1- CERTE- TDC www.zero-m.org

- Student Housse (3 floors, 212 students)
- Joint areas for: Hand-Washing, showering and toilet
- Separate Grey/black water discharge
- Floor 600m²

TDC will be part of *SWM house*, where it will be possible to see examples of different SWM techniques and solutions, in order to display how is possible rationalizing water use both at private and community level.

The TDC (CERTE) will be used as laboratory for monitoring the water quality (raw and treated) coming from the TDC itself (urban wastewater) and from the rural settlement of Chorfech. This monitoring will provide the necessary data for the project.

Ongoing Actions: TDC diagnosis for optimisation plan Raw water s qualities monitoring SWM house: identification of suppliers for consultation and location Exploration of other techniques to implement: solar photocatalysis 2- 5000 water saving kits to be freely distributed to citizens and visitors of SWM houses. The kit will be composed by 2 low consumption taps and one flow reducer for the shower and one information leaflet in the local language.

Ongoing action: Concertation with SONEDE to make this operation more informative and sustainable : to target public building.

Coherence with water saving strategy

PROJECT SWMED BI/2.1/548 – ENPI CBC Med PROGRAMME

Standard Project, Priority 2 Promotion of environmental sustainability at the basin level

Measure 2.1 Prevention and reduction of risk factors for the environment and enhancement of natural common heritage, 10 projets

Title	Leader	TN Partner Demonstration site
De l'expérimentation à la diffusion de l'Ecolabel en Méditerranée (ShMILE 2)	Chambre de Commerce et d'Industrie Nice Côte d'Azur (France, ProvenceAlpes-Côte d'Azur)	CITET, INORPI
Management of port areas in the Mediterranean Sea Basin (MAPMED)	University of Cagliari	Fac. Sc. Tunis
AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin AQUAKNIGHT	Institute of Communication and Computer Systems (Greece, Sterea Ellada)	SONEDE, COMETE Eng.

Strategic Call: *solar energy* (6 projects out of the 19 selected), followed by *sustainable tourism* (5 projects), *waste treatment* (3 projects), *agro-food industry* (2 projects), *integrated coastal zone management* (2 projects) and *water management* (1 project). ww.enpicbcmed.eu

Synergy? Complementarity?

SWIM Demonstration Projects Title	Leader	TN Partner Demonstration site
Adaptation to Climate Change of Mediterranean Agricultural Systems (ACLIMAS)	CIHEAM-IAMB, Italy	INAT (Capbon, Manouba, Saida, Mhamedia, Grombalia – North- Eastern Tunisia)
Innovative Means to Protect Water Resources in the Mediterranean Coastal Areas through Re-injection of Treated Water (IMPROWARE)	Italian Ministry of the Environment, Land and Sea (IMELS) - Italy	ONAS (Korba)
Network of demonstration activities for sustainable integrated wastewater treatment and reuse in the Mediterranean countries (Sustain Water MED)	Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH (Jordan)	ONAS (Medenine)
Récupération de l'eau et techniques agricoles sur les terres arides : un modèle intégré et durable dans les régions du Maghreb (SWIM-WADIS MAR)	University Sassari, Italy	IRA (Medenine)

PROJECT SWMED BI/2.1/548 – ENPI CBC Med PROGRAMME

MERCI

PROJECT SWMED BI/2.1/548 – ENPI CBC Med PROGRAMME